Martingale Differences and the Metric Theory of Continued Fractions

نویسندگان

  • ALAN K. HAYNES
  • JEFFREY D. VAALER
چکیده

Abstract. We investigate a collection of orthonormal functions that encodes information about the continued fraction expansion of real numbers. When suitably ordered these functions form a complete system of martingale differences and are a special case of a class of martingale differences considered by R. F. Gundy. By applying known results for martingales we obtain corresponding metric theorems for the continued fraction expansion of almost all real numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point theory in generalized orthogonal metric space

In this paper, among the other things, we prove the existence and uniqueness theorem of fixed point for mappings on a generalized orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point of Cauchy problem for the first order differential equation.

متن کامل

Coupled coincidence point in ordered cone metric spaces with examples in game theory

In this paper, we prove some coupled coincidence point theorems for mappings with the mixed monotone property and obtain the uniqueness of this coincidence point. Then we providing useful examples in Nash equilibrium.

متن کامل

ON INTERRELATIONSHIPS BETWEEN FUZZY METRIC STRUCTURES

Considering the increasing interest in fuzzy theory and possible applications,the concept of fuzzy metric space concept has been introduced by severalauthors from different perspectives. This paper interprets the theory in termsof metrics evaluated on fuzzy numbers and defines a strong Hausdorff topology.We study interrelationships between this theory and other fuzzy theories suchas intuitionis...

متن کامل

An Analogue of a Theorem of Szüsz for Formal Laurent Series over Finite Fields

About 40 years ago, Szüsz proved an extension of the wellknown Gauss-Kuzmin theorem. This result played a crucial role in several subsequent papers (for instance papers due to Szüsz, Philipp, and the author). In this note, we provide an analogue in the field of formal Laurent series and outline applications to the metric theory of continued fractions and to the metric theory of diophantine appr...

متن کامل

Fixed point theory for cyclic $varphi$-contractions in fuzzy metric spaces

In this paper, the notion of cyclic $varphi$-contraction in fuzzymetric spaces is introduced and a fixed point theorem for this typeof mapping is established. Meantime, an example is provided toillustrate this theorem. The main result shows that a self-mappingon a G-complete fuzzy metric space has a unique fixed point if itsatisfies the cyclic $varphi$-contraction. Afterwards, some results inco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009